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Abstract Atypical deployment of social gaze is present early on in toddlers with autism
spectrum disorders (ASDs). Yet, studies characterizing the developmental dynamic behind it are
scarce. Here we used a data-driven method to delineate the developmental change in visual
exploration of social interaction over childhood years in autism. Longitudinal eye-tracking data
were acquired as children with ASD and their typically developing (TD) peers freely explored a
short cartoon movie. We found divergent moment-to-moment gaze patterns in children with ASD
compared to their TD peers. This divergence was particularly evident in sequences that displayed
social interactions between characters and even more so in children with lower developmental
and functional levels. The basic visual properties of the animated scene did not account for the
enhanced divergence. Over childhood years, these differences dramatically increased to become
more idiosyncratic. These findings suggest that social attention should be targeted early in
clinical treatments.

Introduction
Newborns orient to social cues from the first hours of life. They show privileged attention to faces
(Simion et al., 2001), face-like stimuli (Goren et al., 1975; Johnson et al., 1991; Valenza et al., 1996),
and orient preferentially to biological motion (Simion et al., 2008). This automatic and preferen-
tial orientation to social cues early in life is highly adaptive as it provides grounds for developing
experience-dependent competencies critical for an individual’s adequate functioning. Social visual
engagement is one of the first means of exploration and interaction with the world, preceding and
determining more advanced levels of social interaction and autonomy (Klin et al., 2015). Impair-
ments in this elemental skill are one of the core characteristics of Autism SpectrumDisorders (ASD),
a highly heterogeneous lifelong neurodevelopmental condition (American Psychiatric Association,
2013). Broad impairments in social communication and interaction, alongwith repetitive behaviors
and circumscribed interests, have been suggested to lead to a spectrum of functional disabilities in
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ASD (Klin et al., 2007). In this regard, atypical social attention strategies may at least partially con-
tribute to the emergence of the ASDphenotype. Many studies using eye-tracking have explored the
atypicalities in attentional processes and their contribution to core symptoms in ASD (Chawarska
and Shic, 2009; Klin et al., 2003; Falck-Ytter et al., 2013a). Recent meta-analyses concluded that,
besides generally reduced social attention (Chita-Tegmark, 2016b), autism is also characterized by
atypical attention deployment during exploration of social stimuli (Chita-Tegmark, 2016a). Indeed,
aside from a generally diminished interest in social stimuli, when individuals with ASD do attend to
social information, they spend less time exploring key features, such as eyes while showing an in-
creased interest in less relevant cues, such as bodies (Chita-Tegmark, 2016b,a). These atypicalities
are observed as early as twomonths of age (Jones and Klin, 2013) and thus can exert a tremendous
impact on downstream developmental processes that critically depend on experience. The exact
biological mechanisms that govern the emergence of these aberrant social attention patterns and
their course of evolution are currently unknown.

In typical development, following the initial social preference, social attention deployment shows
dynamic changes during infancy and early childhood. During their first year of life, infants progres-
sively increase the time spent looking at faces compared to other elements of their environment
(Frank et al., 2009). The increasing ability to attend to faces in complex environments has been re-
lated to developmental changes in visual attention (Frank et al., 2014). Indeed, during the first year
of life, we observe the development of more endogenous, cortically controlled attention (Colombo,
2001), which allows more flexible and controlled displacement of gaze (Hunnius and Geuze, 2004;
Hendry et al., 2018; Frank et al., 2014; Helo et al., 2016). Developmental improvement in atten-
tional abilities thus promotes engagement with social targets. Furthermore, the increase in capac-
ity to attend to highly relevant social elements is followed by increased similarity in fixation targets
between typically developing (TD) children (Frank et al., 2014). With increasing age, the TD chil-
dren showmore coherence in their visual behavior, as they increasingly focus on similar elements
of the scene (Franchak et al., 2016; Frank et al., 2009; Shic et al., 2008). A trend toward progres-
sively more coherent gaze patterns continues into adulthood (Kirkorian et al., 2012; Rider et al.,
2018). In other words, despite the impressive complexity of our social environment and the diver-
sity of each individual’s experiences, social visual engagement takes a convergent path across TD
individuals, who are increasingly looking at similar elements of the social environment. However,
the current understanding of the dynamic of this progressive tuning of gaze patterns is limited by
the scarcity of studies using longitudinal designs. Indeed, most studies used cross-sectional de-
signs when inferring developmental patterns, which can be biased by interindividual differences.

In regards to autism, understanding the typical development of social visual exploration is of
utmost importance, as the social difficulties associated with ASD result from the cascading effect
of a reduced social interest during the child’s development (Dawson et al., 1998, 2005; Chevallier
et al., 2012). Studies focusing on the developmental changes in visual exploration in autism are
still rather scant but point to altered maturational changes in orienting to social cues. Attention
deployment begins to differ from the age of 2 months in babies who later develop autism, sug-
gesting that divergent trajectories of social visual exploration may start in the first months of life
(Jones and Klin, 2013). A study by Shic et al. (2008) highlighted the absence of typical maturational
change in face scanning strategies in children with ASD between 2 and 4 years of age. Longitu-
dinal studies focusing on typical and atypical development are thus crucially needed to highlight
the underlying developmental mechanisms of atypical attention deployment in ASD. Longitudinal
follow-up design would allow the identification of periods of critical changes in visual behavior that
can be targeted by early interventions. In addition to the parsing of the developmental patterns,
a comprehensive characterization of factors that influence visual behavior in the social context is
necessary to understand the mechanisms of atypical attention deployment in autism.
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Gaze deployment ismediated by numerous factors acting simultaneously, including bottom-up
and top-down processes. Bottom-up mechanisms direct attention to visually prominent elements
as a function of their basic properties (such as orientation, intensity, color, motion) (Itti and Koch,
2000, 2001; Koch and Ullman, 1985) while top-down factors (Itti et al., 2001) are more endogenous
in nature and depend on previous experience, motivation, specific task demands, etc. (Yarbus,
1967). The complex interplay between these two processes orchestrates our attention deployment
during everyday tasks. We can hypothesize that the imbalance, such as enhanced focus on bottom-
up properties of visual content, maybe at the origin of atypical social attention in autism, driving it
away from conventional social targets. Indeed, it has been shown that in the context of naturalis-
tic static scenes, children and adults with ASD tend to focus more on basic, pixel-level properties
than on semantic categories, compared to their TD peers (Amso et al., 2014; Wang et al., 2015).
However, less is known of the contribution of these basic properties to a real-time visual explo-
ration of dynamic content, as static stimuli only allow limited inference to the real-world dynamic
deployment of attention. Studies using dynamic social content are rare and point to somewhat
contrasting results compared to the ones using static stimuli. For example, it has been shown
that in the context of dynamic social content, preschoolers with ASD tend to focus less on the
motion properties of the scene and more on luminance intensity compared to age-matched TD
children (Shic et al., 2007). However, there is currently no consensus in the literature on the rel-
ative predominance between bottom-up and top-down properties in generating aberrant visual
exploration. These two processes were mostly analyzed separately, and studies using ecological
dynamic stimuli are scarce. Hence, another important element is the content type, as it dramati-
cally influences the attentional processes summoned. For instance, non-social content is prone to
elicit more heterogeneous patterns of exploration (Wang et al., 2018). On the other hand, the so-
cial content of higher complexity induces more divergence in gaze deployment in TD (Wang et al.,
2018) while giving rise to atypicalities in visual attention deployment in ASD (Chawarska et al., 2012;
Chita-Tegmark, 2016b).

Measures of gaze deployment (e.g., time spent on the face or eyes) provided valuable insight
into the specificity of social attention patterns in autism (Klin et al., 2002). These measures reflect
the "macrostructure" (Guillon et al., 2014) of the gaze deployment by quantifying the overall time
spent exploring a predefined scene region. However, complementary to the "what" of gaze, the
"when" of it is of equal importance as the demands in the real world come online and require a
timely response. We attend to only a limited amount of elements from a breadth of possibilities,
and what finds the way to our perception will dramatically influence the meaning we attribute to
the social situation. Recent studies have provided important advances in our understanding of
the mechanisms that control what we select to gaze upon on a moment-to-moment basis (Con-
stantino et al., 2017; Kennedy et al., 2017). Quite strikingly, while viewing social scenes, toddler
and school-age twins showed a high concordance not solely in the direction but also in the timing
of their gaze movements (Constantino et al., 2017; Kennedy et al., 2017). Thus, subtle variations
in the visual exploration of social scenes are strongly influenced by genetic factors that favor the
selection of crucial social information (Constantino et al., 2017). The continuous active selection
of pertinent elements from the abundance of possibilities is critical for the interactive specializa-
tion of our brain (Johnson, 2001) and significantly affects how our internal world is shaped. Only a
few studies tackled the question of the moment-to-moment gaze deployment in ASD compared to
TD. Indeed, while on this microstructural level, TD children and adults show coherence in fixation
targets, the fine-grained gaze dynamic in their peers with ASD is highly idiosyncratic and heteroge-
neous (Nakano et al., 2010; Falck-Ytter and von Hofsten, 2011;Wang et al., 2018; Avni et al., 2019).
Atypicalities in the fine-grained extraction of social informationmay have important consequences
on learning opportunities and social functioning (Schultz, 2005). Overall, these findings urge for a
better characterization of the underlying mechanisms and factors that contribute to coherence in
visual patterns in typical development at different timescales, over months and years but also at
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the microstructural level (moment-to-moment) as a gateway for understanding the emergence of
atypical gaze patterns in autism.

In the current study, we opted for a comprehensive approach to characterize atypical visual
exploration in a large sample of 166 children with ASD (1.7-6.9 years old) compared to their age-
matched TD peers (1.7-6.8 years old) by considering both bottom-up and top-down processes.
We first measured the divergence from referent gaze patterns (obtained from the TD children)
in autism on a microstructural level (moment-to-moment) and over larger temporal scales, mea-
suring the developmental change during early childhood. We quantified the divergence between
gaze patterns among the two groups of children while watching a cartoon depicting social interac-
tion using a custom data-driven approach used in our previous studies (Sperdin et al., 2018; Jan
et al., 2019; Kojovic et al., 2019). We estimated the relative contribution of basic visual properties
of the scene to the visual exploration of this dynamic social scene in both groups. Finally, we mea-
sured the contribution of the different features of the video content (visual and social complexity,
directedness of speech) to the divergence from the referent gazing patterns in the ASD group. We
further measured the developmental change in visual exploration in young children with ASD and
their TD peers using the yearly follow-up eye-tracking recordings.
Results
Divergence from the typical gazing patterns, its relation to clinical phenotype and
movie properties
Moment-by-moment divergence from the referent gazing patterns
Gaze data from 166 males with ASD (3.37 ± 1.16 years) were recorded while children watched a 3-
minute episode of the French cartoon Trotro (Lezoray, 2013). The cartoon depicts social interaction
between the three donkey characters at a relatively slow pace. We were interested in capturing
the difference in moment-to-moment gaze deployment in ASD children compared to the TD group
while watching this animated social scene. For this, we compared the gaze allocation of each child
with ASD to the referent gaze patterns obtained from 51 age-matched TDmales (3.48 ± 1.29 years)
who watched the same social scene. Referent gaze patterns ("reference") were obtained by apply-
ing the probability density estimation function (Botev et al., 2010) on gaze data from the TD group
on each frame. Hence, for each child with ASD, we obtained a measure indicating the closeness
to the reference that we denote Proximity Index-PI, (see Figure 1 and Methods section for detailed
explanation). Lower PI values indicate a higher divergence from the reference for the given frame.
As the obtained measure dynamically determines the proximity to the referent gaze distribution,
there is no need to define areas of interest based on the theoretical priors. Moreover, as it will
be further detailed, this method allowed flexibly redefining the referent gaze distribution by con-
straining the reference sample to a specific age range or group.

As the reference TD group was a convenience sample, we ran a bootstrap analysis to ensure
that the obtained referent distribution was not affected by sample size (see Appendix 1 for more
details). According to our stability analyses, the sample size of 51 TD children allows defining the
reference with enough stability, considering it is more than two times bigger than the estimated
smallest stable sample size of 18.
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Figure 1. Proximity Index method illustration. Referent gaze data distribution ("reference") was createdusing gaze coordinates from 51 TD males (aged 3.48±1.29 years old).Upper row: two example frames with gaze coordinates of TD children (blue dots) used to define the"reference" (delimited by contours) and gaze data from a three-year-old male with ASD (whose gazecoordinates are depicted as a red circle). Hotter contour color indicates the area of higher density ofdistribution of gaze in the TD group, meaning that a particular area was more appealing for a higher numberof TD preschoolers for the given frame; the Proximity Index value for the three-year-old male with ASD for theframe on the left had a value of 0.39 and for the frame on the right a value of 0.Lower row: Proximity Index values for the visual exploration of the three-year-old boy with ASD over theentire video with mean Proximity Index value indicated by the dashed red lines.

As the gaze data of the TD group were used as a reference, we wanted to understand how their
individual gazing patterns would behave compared to a fixed average. To this end, we employed
the leave-one-out method to obtain the PI value for each of the 51 TD children. In this manner, the
gazing pattern of each TD child was compared to the reference created by the gaze data of 50 other
TD children. The difference in average PI values between the two groupswas found significant, t(215)= 5.51, p < 0.001 (Figure 2).
Less divergence in visual exploration is associated with better overall functioning in chil-
dren with ASD
To explore how the gaze patterns, specifically divergence in the way children with ASD attended
to the social content, related to the child’s functioning, we conducted a multivariate analysis. We
opted for this approach to obtain a holistic vision of the relationship between visual exploration,
as measured by PI, and different features of the complex behavioral phenotype in ASD. Behavioral
phenotype included the measure of autistic symptoms and the developmental and functional sta-
tus of the childrenwith ASD. Individuals with ASD often present lower levels of adaptive functioning
(Hus Bal et al., 2015; Franchini et al., 2018) and this despite cognitive potential (Klin et al., 2007).
Understanding factors that contribute to better adaptive functioning in very young children is of
utmost importance (Franchini et al., 2018) given the important predictive value of adaptive func-
tioning on later quality of life. The association between behavioral phenotype and PI was examined
using the PLS-C analysis (Krishnan et al., 2011;McIntosh and Lobaugh, 2004). Thismethod extracts
commonalities between two data sets by deriving latent variables representing the optimal linear
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Figure 2. Mean Proximity Index (PI) comparison between groups (TD in blue, ASD in red). The proximityvalues for the TD group were obtained in a leave-one-out fashion, where the PI for each ASD child wasobtained using the referent gaze from 51 typically developing children from the original sample.

combinations of the variables of the compared data sets. We built the cross-correlation matrix us-
ing the PI on the left (A) and 12 behavioral phenotype variables on the right (B) side (see Methods
section for more details on the analysis).

In our cohort, child autistic symptoms were assessed using the ADOS (Lord et al., 2000, 2012),
child developmental functioning using the PEP-3 scale (Schopler, 2005) and child adaptive behavior
using the Vineland Adaptive Behavior Scales, Second Edition, (Sparrow et al., 2005). Thus the final
behavior matrix included two domains of autistic symptoms from the ADOS: social affect (SA) and
repetitive and restricted behaviors (RRB); six subscales of the PEP-3: verbal and preverbal cognition
(VPC), expressive language (EL), receptive language (RL), fine motor skills (FM), gross motor skills
(GM), oculomotor imitation (OMI) and four domains from VABS-II: communication (COM), daily liv-
ing skills (DAI), socialization (SOC) and motor skills (MOT). Age was regressed from both sets of the
imputed data.

The PLS-C yielded one significant latent component (r = 0.331, p = 0.001), best explaining the
cross-correlation pattern between the PI and the behavioral phenotype in the ASD group. The sig-
nificance of the latent component was tested using 1000 permutations, and the stability of the
obtained loadings was tested using 1000 bootstrap resamples. Behavioral characteristics that
showed stable contributions to the pattern reflected in the latent component are shown in red
Figure 3. Higher values of the PI were found in children with better developmental functioning
across all six assessed domains and better adaptive functioning across all four assessed domains.
Autistic symptoms did not produce a stable enough contribution to the pattern (loadings showed
in gray bars on the Figure 3). Still, numerically, a more TD-like gazing pattern (high PI) was seen in
the presence of fewer ASD symptoms (negative loading of both SA and RRB scales of the ADOS-2).
Despite the lack of stability of this pattern, the loading directionality of ASD symptoms is in line with
the previous literature (Wen et al., 2022; Avni et al., 2019), showing a negative relationship between
visual behavior and social impairment. Among the developmental scales, the biggest loading was
found on verbal and preverbal cognition, followed by fine motor skills. While the involvement of
verbal and nonverbal cognition in the PI, an index of visual exploration of these complex social
scenes is no surprise, the role of fine motor skills might be harder to grasp. Interestingly, in ad-
dition to measuring the control of hand and wrist small muscle groups, the fine motor scale also
reflects the capacity of the child to stay focused on the activity while performing controlled actions.
Thus, besides the measure of movement control, relevant as scene viewing implies control of eye
movement, the attentional component measured by this scale might explain the high involvement
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Figure 3. Proximity Index and its relation to behavioral phenotype in children with ASD. Loading on the latentcomponent was obtained using the partial least squares correlation analysis. The cross-correlation matrixcomprised the Proximity index on the imaging (A) side and 12 variables on the behavior (B) side. The behaviormatrix included two domains of autistic symptoms assessed by ADOS-2: Social Affect (SA) and repetitive andrestricted Behaviors (RRB); 6 subscales of the PEP-3: Verbal and preverbal cognition (VPC), Expressivelanguage (EL), Receptive language (RL), Fine motor skills (FM), Gross motor skills (GM), Oculomotor imitation(OMI) and four domains from VABS-II: Communication (COM), Daily living skills (DAI), Socialization (SOC) andMotor skills (MOT). Age was regressed out from both A and B sides of the cross-correlation matrix

of the fine motor scale in the latent construct pattern we obtain.
More ambient and less focal fixations in children with ASD compared to the TD group
Next, we wanted to complement our analysis using standard measures of visual behavior. In our
cross-sectional sample of 166 males with ASD (3.37 ± 1.16 years) and 51 TD males (3.48 ± 1.29
years), we did not find any significant difference between groups with regards to the overall num-
ber of fixations, saccades, median saccade duration, nor saccade amplitude for the duration of
the cartoon (p > 0.05). However, there was a tendency in median fixation duration to be slightly
higher in TD children compared to the ASD group (t(215) = 1.85, p = 0.06), suggesting a more fo-
cused attentional style in the TD group. To characterize the predominant attention exploration
mode while watching the cartoon, we defined two types of fixations based on their duration and
the length of the preceding saccade. Thus using thresholds as in (Unema et al., 2005), a fixation
was considered as "focal" if longer than 180ms and preceded by a saccade of an amplitude smaller
than 5◦ of visual angle. Shorter fixations < 180ms preceded by a longer saccade > 5◦ were clas-
sified as "ambient." We then obtained the proportion of these two fixation types normalized for
the overall fixation number. In the ASD group, we observed significantly more ambient fixations
(Mann-Whitney test: U = 2530, p < 0.001) compared to the TD group. The TD group showed more
focal fixations (U = 2345, p < 0.001) in comparison to the ASD group. In both groups, focal fixa-
tions were more frequent than ambient (p < 0.001) (see Figure 4 A1). Higher presence of focal
fixations was positively correlated to higher values of Proximity Index in both groups (𝑟𝑇𝐷 = 0.459,
𝑟𝐴𝑆𝐷 = 0.434, p < 0.001) while the opposite relationship was evidenced between Proximity index
and proportion of ambient fixations (𝑟𝑇𝐷 = -0.400, 𝑟𝐴𝑆𝐷 = -0.31,p = 0.002) (see Figure 4 Panels A2 & 3).
Compared to the ASD group, the TD group stays less in the "shallow" exploration mode reflected
by the ambient fixations. This exploration mode is deployed first to quickly extract the gist of a
scene before a more in-depth scene analysis is carried through focal fixations. Thus our findings
suggest that, while in the TD group, the gist of the scene is rapidly extracted, the children in the
ASD group spend significantly more time in the explorationmode, wondering where to placemore
deep attention compared to the TD group. Subsequently, they stay less in the focused mode of
attention compared to the TD group.
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The relative contribution of the basic visual properties of the animated scene to gaze
allocation in ASD and TD children
We next measured the group difference in the relative contribution of basic visual properties of
the scene to visual exploration. Previous studies in adults with ASD have shown that these basic
properties play an important role in directing gaze in ASD individuals while viewing naturalistic im-
ages (Amso et al., 2014;Wang et al., 2015). Less is known about the contribution of the basic scene
properties to gaze allocationwhile viewing dynamic content. Moreover, besides using static stimuli,
most studies focused on the adult population, while the early developmental dynamics of these
mechanisms remain elusive. Therefore, we extracted the values of five salience features (intensity,
orientation, color, flicker, motion) for each frame of the video using the variant of the biologically in-
spired saliencemodel, namely Graph-Based Visual Saliency (GBVS) (Harel et al., 2007) as explained
in details in the Methods section. We calculated salience measures for our cross-sectional sample
with 166 males with ASD and age-matched 51 TDmales individually for each frame. For each chan-
nel (intensity, orientation, color, flicker, and motion) as well as the full model (linear combination
of all five channels), we calculated the area under a Receiver Operating Characteristic curve (ROC)
(Green and Swets, 1966). The mean ROC value was then used to compare the two groups.

Contrarily to our hypothesis, for all channels taken individually as well as for the full model,
the salience model better predicted gaze allocation in the TD group compared to the ASD group
(Wilcoxon t-test returned with the value of p < 0.001, Figure 5). The effect sizes (r = 𝑍∕

√

𝑁 , (Rosen-
thal, 1991)) of this difference were most pronounced for the flicker channel r = 0.182, followed by
the orientation channel r = 0.149, full model r = 0.132, intensity r = 0.099, color r = 0.083 and lastly
motion r = 0.066, Appendix 2. The finding that the salient model predicted better gaze location
in TD groups compared to the ASD was not expected based on the previous literature. Still, most
studies used static stimuli and the processes implicated in the process of the dynamic content are
very different. The salience model itself was validated on the adult vision system. It might be that
the gaze in TD better approximates the adult, mature gaze behavior than the gaze behavior in the
ASD group.
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The association of movie content with divergence in visual exploration in ASD group
Taking into account previous findings of enhanced difficulties in processing more complex social
information (Frank et al., 2012; Chita-Tegmark, 2016b; Parish-Morris et al., 2019) in individuals
with ASD, we tested how the intensity of social content influenced visual exploration of the given
social scene. As detailed in theMethods section, social complexity was defined as the total number
of characters for a given frame and ranged from 1 to 3. Frames with no characters represented a
substantial minority (0.02% of total video duration) and were excluded from the analysis. We also
analyzed the influence of the overall visual complexity of the scene on this divergent visual explo-
ration in the ASD group. The total length of edges defining details on the images was employed
as a proxy for visual complexity (see Methods section for more details). Additionally, we identified
themoments of vocalization (monologues versus directed speech) andmore global characteristics
of the scene (frame cuts and sliding background) to understand better how these elements might
have influenced gaze allocation. Finally, as an additional measure, we considered how well the
gaze of ASD children was predicted by the GBVS salience model or the average ROC scores we
derived in the previous section Figure 6, panel A.

To explore the relationship between the PI and different measures of the movie content as pre-
viously, we used a PLS-C analysis that is more suitable than the GLM in case of strong collinearity of
the regressors (this is particularly the case of the visual and social complexity (r = 0.763, p < 0.001,
as well as social complexity and vocalization (r = 0.223, p < 0.001), as can be appreciated on the
Figure 6, panel B. The PLS-C produced one significant latent component (r = 0.331, p < 0.001). The
latent component pattern was such that lower PI was related to higher social complexity, followed
by higher visual complexity and the presence of directed speech. In addition, moments including
characters engaged in monologue, moments of frame change, and background sliding increased
the PI in the group of ASD children. The monologue scenes also coincide with the moments of
lowest social complexity that produce higher PI values. For the frame switch and the sliding back-
ground, the TD reference appears more dispersed in these moments as children may recalibrate
their attention onto the new or changing scene, making the referent gaze distribution more vari-
able in these moments and thus giving ASD more chance to fall into the reference space as it is
larger. Finally, visual salience also positively contributed to the PI loading, which is in line with our
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.

previous finding of the salience model being more successful in predicting TD gaze than ASD gaze.
Developmental patterns of visual exploration
More divergence in visual exploration is associated with unfolding autistic symptomatol-
ogy a year later
To capture the developmental change in the PI and its relation to clinical phenotype we conducted
the multivariate analysis considering only the subjects that had valid eye-tracking recordings at
two time points one year apart. Out of 94 eligible children (having two valid eye-tracking record-
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ings a year apart), 81 had a complete set of phenotype measures. All 94 children had an ADOS, but
ten children were missing PEP-3 (9 were assessed using Mullen Scales of Early Learning (Mullen,
1995), one child was not testable at the initial visit), and three children were missing VABS-II as the
parents were not available for the interview at a given visit. The proximity index in this smaller
paired longitudinal sample was defined using the age-matched reference composed of 29 TD chil-
dren spanning the age (1.66-5.56) who also had a valid eye-tracking recording a year later. As the
current subsample was smaller than the initial one, we limited our analyses to more global mea-
sures, such as domain scales (not the test subscales as in our bigger cross-sectional sample). Thus,
for the measure of autistic symptoms, we used the total severity score of ADOS. Cognition was
measured using the Verbal and preverbal cognition scale of PEP-3 (as the PEP-3 does not provide
a more global measure of development (Schopler, 2005)) and adaptive functioning using the Adap-
tive behavior Composite score of Vineland (Sparrow et al., 2005). To test how the PI relates within
and across time points, we built three cross-covariance matrices (T1-PI to T1-symptoms; T1-PI to
T2-symptoms; T2-PI to T2-symptoms) with the PI on one side (A) and the measure of autistic symp-
toms, cognition, and adaptation on the other side (B). As previously, the significance of the patterns
was tested using 1000 permutations, and the stability of the significant latent components using
1000 bootstrap samples.

The PLS-C conducted on simultaneous PI and phenotype measures at the first time point (T1-PI
- T1 symptoms) essentially replicated the pattern we observed on a bigger cross-sectional sample.
One significant LC (r= 0.306 and p= 0.011) showed higher PI co-occurring with higher cognitive and
adaptive measures (see Appendix 4). The cross-covariance matrix using a PI at T1 to relate to the
phenotype at the T2 also yielded one significant latent component (r= 0.287 and p= 0.033). Inter-
estingly, the pattern reflected by this LC showed higher loading on the PI co-occurring with lower
loading on autistic symptoms. Children who presented lower PI values at T1 were the ones with
higher symptom severity at T2. The gaze pattern at T1 was not related to cognition nor adaptation
at T2 (see Figure 7, panel A). Finally, the simultaneous PLS-C done at T2 yielded one significant LC
where higher loading of the PI coexisted with negative loading on autistic symptoms and higher
positive loading on the adaptation score (r= 0.322 and p= 0.014) Figure 7, panel B. The level of
typicality of gaze related to the symptoms of autism at T2(mean age of 4.05±0.929) but not at a
younger age (mean age of 3.01±0.885). This finding warrants further investigation. Indeed, on
the one hand, the way children with TD comprehend the world changes tremendously during the
preschool years, and this directly influences how the typicality of gaze is estimated. Also, on the
other hand, the symptoms of autism naturally change over the preschool years, and all these ele-
ments can be responsible for the effect we observe.
Divergent developmental trajectories of visual exploration in children with ASD
After exploring the PI association with various aspects of the behavioral phenotype in ASD children,
we were also interested in the developmental pathway of visual exploration in this complex social
scene for both groups of children. Previous studies using cross-sectional designs have demon-
strated important changes in how children attend to social stimuli depending on their age (Frank
et al., 2012; Helo et al., 2014). As our initial sample spanned a relatively large age range (1.7 - 6.9
years), we wanted to obtain a more fine-grained insight into the developmental dynamic of visual
exploration during the given period. To that end, when study-specific inclusion criteria were satis-
fied, we included longitudinal data from our participants who had a one-year and/or a two years
follow-up visit (see Methods section). With the available 306 recordings for the ASD group and
105 for the TD group, we applied a sliding window approach (Sandini et al., 2018) (see Methods
section). Our goal was to discern critical periods of change in the visual exploration of complex
social scenes in ASD compared to the TD group. We opted for a sliding window approach consid-
ering its flexibility to derive a continuous trajectory of visual exploration and thereby capture such
non-linear periods. The sliding window approach yielded a total of 59 age-matched partially over-
lapping windows for both groups covering the age range between 1.88 - 4.28 years (mean age of
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the window) (Figure 8, panel A illustrates the sliding window method).
We then estimated gaze dispersion on a group level across all 59 windows. Dispersion on a sin-

gle frame was conceptualized as themean pairwise distance between all gaze coordinates present
on a given frame (Figure 8, panel B). Gaze dispersionwas computed separately for ASD and TD. The
measure of dispersion indicated an increasingly discordant pattern of visual exploration between
groups during early childhood years. The significance of the difference in the gaze dispersion be-
tween two groups across age windows was tested using the permutation testing (see Methods
section). The statistically significant difference (at the level of 0.05) in a window was indicated us-
ing color-filled circles and as can be appreciated from the Figure 8, panel C was observed in 46
consecutive windows out of 59 starting the age of 2.5 to 4.3 (average age of the window). While the
TD children showed more convergent visual exploration patterns as they got older, as revealed by
progressively smaller values of dispersion (narrowing of focus), the opposite pattern characterized
gaze deployment in childrenwith ASD. From the age of 2 years up to the age of 4.3 years, this group
showed a progressively discordant pattern of visual exploration (see Figure 8, panel C).
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To ensure the robustness and validity of our findings, we addressed several potential confound-
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ing factors. These included differences in sample size TD (TD sample included 51 and ASD sample
166 children), the heterogeneity of ASD behavioral phenotypes, and the use of developmental
age rather than chronological age in our sliding window approach. We adopted a sequential ap-
proach, first examining the impact of unequal sample sizes and then considering both sample size
and phenotypic heterogeneity together. Additionally, we implemented a sliding window method-
ology using developmental age as the primary matching parameter (for a detailed description, see
Appendix 5). Our results consistently reaffirmed our initial findings obtained when using chrono-
logically age-matched samples. Specifically, when matched for both sample size and developmen-
tal age, children with ASD consistently demonstrated a greater degree of interindividual disparity
across childhood years compared to TD children (Appendix 5, Panels D1-D2).
Discussion
In the present study, we used a data-drivenmethod to quantify differences in spatio-temporal gaze
patterns between children with ASD and their TD peers while watching an animated movie. Chil-
dren with ASD who showed less moment-to-moment divergence in the exploration of a 3-minute
cartoon compared to referent gaze distribution of age-matched TD children had better adaptive
functioning and better communication and motor skills. Visual exploration in the group of chil-
dren with ASD was not better predicted by the low-level salience of the visual scene compared
to their TD peers. Among various features of the video that children saw, the intensity of social
content had the most important impact on divergence from the TD gaze patterns; children with
ASD showed a more divergent deployment of attention on scene sequences with more than one
character suggesting difficulties in processing social cues in the context of social interaction. On a
larger temporal scale, across childhood years, the TD children showed a progressive tuning in the
focus of their attention, reflected by a narrowing of the group focuswhile the ASD group showedno
such narrowing. Instead, their gaze patterns showed increasing dispersion over the same period.
Of note, the children with ASD showing lower levels of divergence in gaze deployment compared
to the age-matched TD group tended to have fewer symptoms of autism a year later.

Our results corroborate and extend the findings of a body of studies that have explored mi-
crostructural gaze dynamics in autism (Avni et al., 2019; Nakano et al., 2010; Falck-Ytter et al.,
2013b;Wang et al., 2018) and have demonstrated divergentmoment-to-moment gaze deployment
in childrenwith ASD compared to their age-matched TD peers. These processes are very important
as any slight but systematic divergence in gaze deployment can have a tremendous influence on
the experience-dependent brain specialization (Johnson, 2001; Klin et al., 2009). These subtle but
relevant patterns might not be detected by methods focusing on macrostructural gaze structure
measuring overall attention allocation on distinct visual features (e.g., faces, eyes, etc.) based on
predefined Areas of Interest (AOI). Here, we extend the existing findings by first using a different
data-driven methodology and, second, by including a developmental aspect to the spatiotemporal
gaze deployment in autism and typical development. In our study, to define the referent gaze be-
havior, we present a novel index – the proximity index - that accounts for the entire scene, whether
multiple socially relevant targets are present or just a few objects, and in doing so, provides amore
subtle estimation of ASD gaze deployment in comparison to TD (see Figure 1). Furthermore, in this
study, we used a cartoon, and thus a dynamic stream that is also more ecological in its repre-
sentation of social interactions and has the advantage of being very appealing to young children.
Previous research (Riby and Hancock, 2009) has shown that children with ASD attend more to dy-
namic cartoon stimuli representing social interaction than when shown natural movies of people
interacting. Despite animated movies being a simplified version of social interaction with reduced
social complexity, themovie we analyzed provided us with ample insight into the atypicality of gaze
behavior in children with ASD.
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We showed that the level of divergence in gaze exploration of this 3-minute video was corre-
lated with ASD children’s developmental level in children with ASD and their overall level of au-
tonomy in various domains of everyday life. This finding stresses the importance of studying the
subtlety of gaze deployment with respect to its downstream contribution to more divergent global
behavioral patterns later in development (Schultz, 2005; Young et al., 2009; Klin et al., 2015; Jones
and Klin, 2013). Gaze movements in a rich environment, as the cartoon used here, inform not only
immediate perception but also future behavior as experience-dependent perception now is likely
to alter the ongoing developmental trajectory. In accordance with this view, the level of typicality
of visual exploration in ASD children at T1 was related to the level of autistic symptoms at T2 but
not at T1. One possible interpretation of the lack of stable association at T1 might be due to the
lower stability of symptoms early on. Indeed, while diagnoses of ASD show stability with age, still a
certain percentage of children might show fluctuation. The study by Lord and collaborators (Lord
et al., 2006) following 172 2-year-olds up to the age of 9 years old showed that diagnosis fluctu-
ations are more likely in children with lesser symptoms compared to children with more severe
symptoms. Still, as our study included all ASD severities, it is subject to such fluctuations. Another
possible interpretation comes from the maturation of the gaze patterns in the TD group, against
which we define the typicality of gaze in the ASD group. As can be seen in our results, children
with TD show a tremendous synchronization of their gaze during the age range considered, result-
ing in a tighter gaze distribution at T2 and thus, a more sensitive evaluation of ASD gaze at that
time point. The possibility that TD show more similar gaze allocation with age, while ASD’s gaze
becomes increasingly idio-syncretic with age, highlights the value of addressing the mechanisms
underlying the developmental trajectories of gaze allocation in future studies.

With regards to the exploration style, while watching the cartoon, compared to their TD peers,
children with ASD presented more ambient, exploratory fixations, indicative of rapid acquisition
of low-frequency information (Eisenberg and Zacks, 2016). On the other hand, they showed sig-
nificantly fewer focal fixations that are known to operate with more fine-grained high-frequency
information. This suggests that childrenwith ASD spentmore time than the TD group in an ambient
mode trying to grasp the global scene configuration (Ito et al., 2017) and less in a detail-sensitive
focused mode. These two modes of exploration are supported by distinct and yet functionally
related systems of dorsal attention (ambient mode-related processing of spatial relations) and
ventral attention (dealing with behaviorally salient object representation through the involvement
of focused mode) (Helo et al., 2014). Our finding of differential recruitment of these two modes
during the viewing of social stimuli might suggest differential recruitment of these two attentional
networks during the processing of these complex social scenes. In our previous work on a smaller
sample for which we also acquired EEG recording during the time that children watched the Trotro
cartoon, we found that the divergence in gaze deployment was related to the vast abnormalities
in neural activation, including reduced activation of frontal and cingulate regions and increased
activation of inferior parietal, temporal, and cerebellar regions (Jan et al., 2019). In a similar EEG-
eye-tracking study using videos involving biological motion (children doing yoga in nature) (Sperdin
et al., 2018), we found increased contribution from regions such as the median cingulate cortex
and the paracentral lobule in the toddlers and preschoolerswith ASDwhohad amore similar visual
exploration pattern to their TD peers (higher PI). Thus, the children who showed less divergence
from referent gaze patterns (TD-like viewing patterns) more actively engaged the median cingu-
late cortex and the paracentral regions suggesting potential compensatory strategies to account
for the divergent brain development over time. Longitudinal studies combining eye-tracking and
neuroimaging techniques are necessary to confirm the hypothesis of such compensatory hyperac-
tivation.

In an effort to parse the complexity in gaze deployment evidenced in our ASD group across
childhood years, we measured the contribution of basic visual properties of the scene to the gaze
deployment in this group as compared to the TD group. We found that the basic visual properties
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played a less important role in directing gaze in our group of young children with ASD as compared
to their TD peers. This was observed across all separate channels, namely, intensity, orientation,
color, motion, and flicker, as well as the full salience mode with all channels combined. Previous
research has shown that bottom-up features are responsible for directing attention in very young
infants, but from 9months of age, top-down processes take predominance in directing gaze (Frank
et al., 2009). Less is known about the relative contribution of these processes while watching com-
plex dynamic stimuli over the developmental span. Using a cross-sectional sample of TD children
and adults Rider et al. (2018) showed that gaze deployment in both children and adults was better
predicted by the presence of a face in the scene (summoning top-down processing mechanisms)
than by low-level visual properties of the scene. However, the two salience models they used
(IK and GBVS, the latter being the same as the one used in our study) were better at predicting
gaze data in adults than in children suggesting that these dynamic salience models might be more
adapted to the mature visual system. Indeed our sample is relatively young, and it is possible that
the lesser success of the salience models to predict gaze allocation in ASD children might be in-
fluenced by the visual and motor abnormalities characterizing this age range (Rider et al., 2018;
Farber and Beteleva, 2005).

Contrary to the bottom-up visual properties of the scenes, social intensity was an important
element in governing the gaze divergence in children with ASD. The finding of a more divergent
pattern in frames comprising the interaction between characters corroborates previous findings
of atypical face (Hanley et al., 2013) and dynamic social stimuli (Speer et al., 2007) processing,
particularly in the context of interaction (Parish-Morris et al., 2019). Social interaction processing
depends strongly on the top-down inputs, as the choice of what is to be attended relies on prior
expectations, attributed meaning, and global language and scene understanding. Here our data
show that ASD children most at risk on these skills also show lower, less TD-like PI.

The sliding window approach yielded a fine grained-measure of change in gaze deployment in
both groups of children during early childhood. With advancing age, TD children showed increas-
ingly coherent gaze patterns, corroborating previous findings of increased consistency in TD gaze
behavior over time (Frank et al., 2009; Shic et al., 2007; Franchak et al., 2016; Rider et al., 2018;
Kirkorian et al., 2012). On the other hand, children with ASD showed increasingly heterogeneous
patterns during the same period. A similar contrasting pattern with gaze in TD individuals getting
more stereotyped from childhood to adulthood and gaze in ASD groups showing more variability
was brought forward in a study by Nakano et al. (2010). While this study used a cross-sectional
design to study the developmental change in a group of children and adults, to our knowledge,
our study is the first to extend the findings on both TD and those with ASD using a longitudinal de-
sign and focusing on a moment-to-moment gaze deployment. This higher consistency in gaze in
the TD group with increasing age was put in relation to more systematic involvement of top-down
processes (Kirkorian et al., 2012; Franchak et al., 2016; Helo et al., 2017). During typical devel-
opment through the phylogenetically (Rosa Salva et al., 2011) favored mechanism of preferential
orientation to social stimuli, children show increasing experience with and subsequently increas-
ing understanding of social cues setting them on the typical path of social development (Klin et al.,
2009; Jones and Klin, 2013). On the other hand, strikingly divergent patterns in children with ASD
might be seen as a product of the accumulation of atypical experiences triggered by social atten-
tion deployment diverging early on in their development (Jones and Klin, 2013). Behaviorally, in
children with ASD during the preschool years, we observe the emergence of circumscribed inter-
ests alongside the tendency of more rigid patterns of behaviors (insistence on sameness) (Richler
et al., 2010). These emerging patterns of interests might contribute to the divergence in gaze as
attention is rather attracted to elements related to the circumscribed interests (Sasson et al., 2008,
2011), thus amplifying the derailment from the referent social engagement path (Klin et al., 2015).
Ultimately, interests that are, indeed, idiosyncratic in nature might limit group-level coherence;
however, a discernible amount of within-subject stability in gaze patterns over shorter time scales
may be expected. While the present study does not address the latter, our results highlight the
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loss of group cohesion in gaze as ASD children age in line with emerging findings of marked gaze
in-consistency across individuals with ASD (Nakano et al., 2010; Wang et al., 2018). Whether, as
shown by (Avni et al., 2019), within-individuals consistency also decreases when the same video is
seen twice is an important topic for future studies to address. Overall, our results are consistent
with the presence of growing idiosyncrasy in the selection and processing of information, particu-
larly in the context of social interaction in ASD. An increased idiosyncrasy on the neural level while
watching dynamic social scenes has been put forward by a number of studies (Hasson et al., 2009;
Byrge et al., 2015; Bolton et al., 2018, 2020) andwas relatedwith lower scene understanding (Byrge
et al., 2015) and higher presence of autistic symptoms (Bolton et al., 2020). The mechanisms of
efficient selection of relevant social elements are genetically controlled (Constantino et al., 2017;
Kennedy et al., 2017), and a disturbance we observe in ASD is most likely a downstream product of
the gene-environment correlation (Klin et al., 2015). According to this view, the initial vulnerability
(Jones and Klin, 2013; Constantino et al., 2017) characterizing autism would lead to a lifetime of
atypical experiences with the social world, which in turn could result in atypical brain specialization
and more idiosyncratic behavioral patterns.

The finding of progressive divergence in gaze patterns in childrenwith ASDduring the childhood
years urges for early detection and early intensive intervention to prevent further derailment from
the typical social engagement path (Dawson et al., 2010). The present study is one of the first
to tackle microstructural atypicalities in gaze deployment in young children with ASD taking into
account developmental change. Our longitudinal findings of the initial gazing divergence infor-
mativeness of the later autistic symptomatology reflect the potential of the present method as
a promising tool for understanding the mechanisms of developmental change in ASD. This work
stresses the need to better characterize the link between behavioral phenotypes and the under-
lying neurobiological substrates to adapt early intervention strategies to the neurodevelopmental
mechanisms involved.

The current study comes with a number of limitations. The lack of a control group of compara-
ble size to the ASD groupwas a severely limiting factor. The study protocol insidewhich the present
work was realized, is rather dense, and longitudinal visits are spaced 6 months from each other,
which asks for an important investment from families who would otherwise not need this highly
precise assessment of the developmental functioning of their child. From the developmental per-
spective, a bigger TD sample would allow more precision in measurements of the developmental
changewith age. It would allow defining the referent groups that are tightlymatchedwith regard to
age and allow pure longitudinal measures. We tried our best to account for this by using a sliding
window approach with partially overlapping windows in order to infer developmental dynamics
in both groups over childhood years, but an ideal design would be purely longitudinal. A bigger
TD sample would also allow more sophisticated analysis, such as unsupervised clustering to test
the potential of the Proximity Index method for data-driven classification. Moreover, an important
question to address is the development of gaze dynamics in girls with ASD. In the current study, we
focused only on males, as the number of eligible females with ASD was much smaller. Finally, an-
other important element that was out of the scope of the present study but that would warrant an
in-deep investigation in this early post-diagnosis period is the role of the behavioral treatment chil-
dren received after the diagnosis was established. Early intensive behavioral intervention greatly
improves the symptoms and the functioning profile of the individuals on the spectrum. It would
be important to learn how gaze behavior is influenced by such intervention, and how behavioral
profile changes following the change in visual behavior.

The method presented in the current study can easily be applied to any eye-tracking paradigm
and any research questionmeasuring the degree of similarity between any number of populations.
It has the potential for application in population-wide studies for charting developmental paths of
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visual exploration across the lifespan and is a promising tool for automated screening of children
at risk of ASD.
Methods and Materials
Experimental Model and Subject Details
Cross-sectional sample
Hundred sixty-six males with autism (3.37 ± 1.16 years) and 51 age-matched typically developing
males (3.48 ± 1.29 years) participated in the study. Table 1 summarizes the clinical characteris-
tics of our cross-sectional sample. Our study included only males due to fewer females with ASD.
The clinical diagnosis of autism, based on DSM criteria, was confirmed using the standardized ob-
servational assessment of the child and interviews with caregivers(s) retracing the child’s medical
and developmental history. All children with ASD reached the cut-off for ASD on Autism Diagnos-
tic Observation Schedule-Generic (ADOS-G), (Lord et al., 2000) or Autism Diagnostic Observation
Schedule-2nd edition (ADOS-2) (Lord et al., 2012). For children who underwent the ADOS-G assess-
ment, the scores were recoded according to the revised ADOS algorithm (Gotham et al., 2007) to
ensure comparability with ADOS-2.
Before inclusion in the study, typically developing (TD) children were screened using a question-
naire focusing on medical history and history of pregnancy. Children were not included in our TD
group if they were born prematurely or had a positive screen for the presence of any known neuro-
logical or psychiatric disorder in the child itself or known case of ASD in any first-degree relative of
the child. Moreover, all TD children were also assessed using the ADOS-G or ADOS-2 evaluations
to exclude the presence of ASD symptoms. The majority of TD participants had a minimal severity
score of 1, except four children who had a score of 2.
The data for the current study were acquired as a part of a larger longitudinal study of early de-
velopment in autism based in Geneva. Detailed information about cohort recruitment has been
given elsewhere (Franchini et al., 2017, 2018;Kojovic et al., 2019). The study protocol was approved
by the Ethics Committee of the Faculty of Medicine of Geneva University, Switzerland (Swissethics,
protocol 12-163/Psy 12-014, referral number PB_2016-01880). All families gave written informed
consent to participate.
Unstructured longitudinal sample
As participants in our study are followed longitudinally, their repeated visits were included when
satisfying the inclusion criteria (later detailed in the Method details section). This yielded a total
of 308 recordings for the ASD group and 105 for the TD group (all recordings were collected a
year apart; 101 children with ASD contributed two recordings each, and 41 children with ASD con-
tributed three recordings each, while 33 and 21 TD children contributed respectively 2 and 3 record-
ings each) (see Figure 8 for illustration of the available recordings). This sample was employed to
derive trajectories of visual exploration over the childhood years using mixed models analysis and
considering both within-subject and between-subject effects (Mutlu et al., 2013; Mancini et al.,
2019) and sliding windows approach (Sandini et al., 2018) (further detailed in the Method details
subsection).
One-year follow-up longitudinal sample
To obtain a longitudinal measure of change in visual exploration, we used a smaller subsample
that included children who had recordings obtained a year apart. From the overall number of ASD
children (101) that had two recordings, seven were removed as they were done two years apart.
The samewas done on the TD group, where four were removed. Thus, this final paired longitudinal
sample included 94 males with ASD (1.66 to 5.43 years old) and 29 age-matched TD males (1.31 to
5.56 years old) who were evaluated a year later.
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Table 1. Description of the cross-sectional sample.

Measures ASD (n = 166) TD (n = 51) p value
Mean±SD Mean±SD

Age 3.37±1.16 3.48±1.29 0.621𝑎

Total Symptom Severity Score (ADOS-2
CSS)

7.19±1.78 1.10±0.300 < 0.001𝑎

Social Affect ( ADOS-2 SA-CSS) 6.08±2.06 1.18±0.478 < 0.001𝑎

Repetitive Behaviors &
Restricted Interests (ADOS-2 RRB CSS) 8.63±1.85 2.16±1.92 < 0.001𝑎

Social Interaction (ADI-R : A) 14.8±5.70 1.04±1.39 < 0.001𝑎

Communication (ADI-R : B) 9.97±3.44 1.12±1.35 < 0.001𝑎

Repetitive Behaviors &
Restricted Interests (ADI-R : C) 4.79±2.22 0.314±0.678 < 0.001𝑎

Age of onset (ADI-R : D) 3.60±0.997 0.078±0.337 < 0.001𝑎

Best Estimate IQ 83.6±24.0 119±16.5 < 0.001𝑎

VABS-II Adaptive Behavior 80.2±10.2 103±8.21 < 0.001
VABS-II Communication 80.2±13.7 105±8.94 < 0.001
VABS-II Daily Living Skills 83.7±11.6 101±8.25 < 0.001
VABS-II Socialization 79.2±9.82 101±8.49 < 0.001
VABS-II Motor Skills 88.4±11.5 102±11.2 < 0.001𝑎

Note. p values𝑎 are obtained using nonparametric Mann-Whitney tests of differences between the twogroups.

Behavioral phenotype measures
As detailed above, a direct assessment of autistic symptoms was obtained using Autism Diagnos-
tic Observation Schedule-Generic ADOS-G, (Lord et al., 2000) or Autism Diagnostic Observation
Schedule-2nd edition (ADOS-2) (Lord et al., 2012). Since its latest version (ADOS-2) the ADOS yields
a measure of severity of autistic symptoms ranging from 1-10, conceived to be relatively indepen-
dent of the participant’s age or verbal functioning (Gotham et al., 2009; Estes et al., 2015). For
subjects who were administered the older version of the ADOS (ADOS-G), the severity scores were
obtained according to the revised ADOS algorithm (Gotham et al., 2007). For a more precise mea-
sure of symptoms according to their type, we included the domain severity scores, namely, social
affect (SA) and restricted and repetitive behaviors (RRB) (Hus et al., 2014).

A detailed developmental history of symptom emergence and presentation was obtained us-
ing the Autism Diagnostic Interview-Revised (Lord et al., 1994). ADI-R is a standardized, semi-
structured interview administered by trained clinicians to parents/caregivers. The ADI-R assesses
the early developmental milestones and the present (last three months) and past behavior in the
domains of reciprocal social interactions (A), communication (B), and restricted, repetitive, and
stereotyped patterns of behavior (C). Being developed in theDSM-IV framework (Association, 1994)
specific attention is given to the age of onset of symptoms (domain D, Demographics table).

In our large longitudinal autism cohort, the cognitive functioning of children is assessed using
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several assessments depending on the age of the children and their capacity to attend to the de-
mands of cognitive tasks. Since the cohort conception in 2012, we used the Psycho-Educational
Profile, third edition, PEP-3, (Schopler, 2005) validated for 24-83 months. In 2015 we added the
Mullen Early Learning scales (Mullen, 1995) validated for 0-68 months. For the current study, in all
analyses of the Results section, we used the scores obtained from the PEP-3 for the behavioral cor-
relations with the PI. However, when we compared the group of ASD children with the TD children
in the description of the sample at the beginning of this section, we faced a lot of missing data
on the TD side, as a complete PEP-3 was frequently missing in children with TD (lack of time to
complete several cognitive assessments). To be able to present a descriptive comparison between
the two groups, in the Demographics table, and only there, we used the Best Estimate Intellectual
Quotient, a composite measure obtained by combining available assessments as previously de-
scribed in the literature (Howlin et al., 2014; Kojovic et al., 2019; Howlin et al., 2013; Bishop et al.,
2015; Liu et al., 2008). In the ASD group the majority of children had the Psycho-Educational Pro-
file, the third edition, Verbal/Preverbal Cognition scale (PEP-3; VPC DQ, (Schopler, 2005)) (n = 154).
The VPC Developmental Quotient (DQ) was obtained by dividing the age equivalent scores by the
child’s chronological age. For a smaller subset of children with ASD (below two years of age), as
the PEP-3 could not be administered, we used Mullen Early Learning scales (Mullen, 1995), (n = 10).
Developmental quotients were obtained using themean age equivalent scores from four cognitive
scales of the MSEL (Visual Reception, Fine Motor, Receptive Language, and Expressive Language)
and divided by chronological age. One childwith ASDwas administered only the Full-Scale IQ (FSIQ),
Wechsler Preschool and Primary Scale of Intelligence, fourth edition (Wechsler David, 2014), and
one child was not testable at the initial visit (severe sensory stimulation). In the TD group, the ma-
jority of children were assessed using the MSEL (n = 24), followed by PEP-3 n = 23, and WPPSI-IV (n
= 4 children). The composite score comparison (BEIQ) is present in the Demographics table.

Adaptive functioning was assessed using the Vineland Adaptive Behavior Scales, second edition
(VABS-II; (Sparrow et al., 2005)). VABS-II is a standardized parent interview measuring adaptive
functioning from childhood to adulthood in communication, daily-living skills, socialization, and
motor domain. The adaptive behavior composite score (ABCS), a global measure of an individual’s
adaptive functioning, is obtained by combining the four domain standardized scores.
Method Details
Stimuli and apparatus
The current experiment consisted of free-viewing of one episode of the French cartoon "Trotro"
lasting 2’53” (Lezoray, 2013). This cartoon was the first stimulus in an experiment involving the si-
multaneous acquisition of High-density EEG recorded with a 129-channel Hydrocel Geodesic Sen-
sor Net® (Electrical Geodesics Inc., Eugene, OR, USA). The findings concerning the EEG data are
published separately (Jan et al., 2019). This cartoon depicts human-like interactions between three
donkey characters at a relatively slow pace. The original soundtrack was preserved during record-
ing. Gaze data were collected using Tobii TX300 eye tracker (https://www.tobiipro.com), sampled
at 300Hz, except for five recordings acquired at a lower sampling frequency (60Hz) using Tobii
TXL60. The screen size was identical for both eye-tracking devices (height: 1200 pixels (29◦38’) and
width: 1920 pixels (45◦53’), with a refresh rate of 60Hz. Participants were seated at approximately
60 cm from the recording screen. The cartoon frames subtended a visual angle of 26◦47’×45◦53’
(height×width). A five-point calibration procedure consisting of child-friendly animations was per-
formed using an inbuilt program in the Tobii system. Upon verification, the calibration procedure
was repeated if the eye-tracking device failed to detect the participant’s gaze position accurately.
The testing room had no windows, and lighting conditions were constant for all acquisitions.
Quantification and Statistical Analysis

20 of 37



Eye-tracking analysis
We excluded data from participants who showed poor screen attendance, defined as binocular
gaze detection on less than 65% of video frames. The screen attendance was higher in the TD
sample (93.8 ± 6.37 seconds) compared to the ASD group (87.8 ± 9.33 seconds), U=2568, p < 0.001.
To extract fixations, we used the Tobii IV-T Fixation filter (Olsen, 2012) (i.e., Velocity threshold: 30◦/s;
Velocity window length: 20ms. Adjacent fixations were merged (Maximum time between fixations
was 75ms; Maximum angle between fixations was 0.5◦). To account for differences in the screen
attendance, we omitted instances of non-fixation data (saccades, blinks, off-screen moments) in
all calculations.
Determining the "reference" of visual exploration
To define the referent gaze distribution (“reference”), against which we will compare the gaze data
from the ASD group, we employed the kernel density distribution estimation function on gaze
data from TD individuals on each frame of the video. The reference sample comprised 51 typically
developing children (3.48 ± 1.29 years). To create referent gaze distribution, we opted for a non-
fixed bandwidth of a kernel as the gaze distribution characteristics vary significantly from frame to
frame. Precisely, fixed bandwidth would result in over-smoothing the data in the mode and under-
smoothing extreme distribution cases of gaze data at tails. We used the state-of-the-art adaptive
kernel density estimation that considers the data’s local characteristics by employing adaptive ker-
nel bandwidth (Botev et al., 2010). Thus a Gaussian kernel of an adaptive bandwidth was applied
at each pair of gaze coordinates, and the results were summed up to obtain an estimation of the
density of gaze data (see Figure 1). Obtained density estimation reflects a probability of gaze allo-
cation at the given location of the visual scene for a given group. This probability is higher at the
distribution’s taller peaks (tightly packed kernels) and diminishes toward the edges. We used the
Matlab inbuilt function contour to delimit isolines of the gaze density matrix.
Quantifying the divergence in visual exploration
Upon the "reference" definition, we calculated the distance of gaze data from this referent distribu-
tion on each frame for each child with ASD (n = 166; 3.37 ± 1.16 years). Comparison to this referent
pattern yielded ameasure of Proximity Index-PI (see Figure 1). The calculation of the Proximity Index
values was done for each frame separately. Proximity Index values were scaled from 0 to 1 at each
frame for comparison and interpretation. We used the Matlab inbuilt function contour to delimit
isolines of the gaze density matrix. To have a fine-grained measure, we defined 100 isolines per
density matrix (i.e., each frame). Then we calculated the proximity index for each child with ASD
framewise. Gaze coordinates that landed outside the polygon defined by contour(s) of the lowest
level (1) obtained a PI value of 0. The gaze coordinates inside the area defined by gaze density ma-
trix isolines obtained the PI value between 0.01 and 1. The exact value of these non-zero PI values
was obtained depending on the level number of the highest isoline/contour that contained the x
and y coordinates of the gaze. As we defined 100 isolines per density matrix, the levels ranged
from 1 to 100. Accordingly, a gaze coordinate that landed inside the highest contour (level 100)
obtained a PI value of 1, and the one that landed inside the isoline 50 obtained a PI value of 0.50.
A high PI value (closer to the mode of the density distribution) indicates that the visual exploration
of the individual for a given frame is less divergent from the reference (more TD-like). A summary
measure of divergence in visual exploration from the TD group was obtained by averaging the PI
values for the total duration of the video.

While the smoothing kernel deployed in our density estimation function is Gaussian, the final
distribution of the gaze data is not assumed Gaussian. As shown in Figure 1, right upper panel,
the final distribution was sensitive to the complexity of gaze distribution (e.g., having two or more
distant gaze foci in the TD group) which allowed a flexible and ecological definition of referent
gaze behavior. The coexistence of multiple foci allows for pondering the relative importance of
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the different scene elements from the point of view of the TD group. It further distinguishes our
method from hypothesis-driven methods that measure aggregated fixation data in the scene’s
predefined regions. For the frames where the gaze of the TD group showed many distinct focal
points, like the one in Figure 1, right upper panel, we calculated the PI in the same manner as
for frames that had a unique focus distribution. For a given gaze coordinate from a child with
ASD, we identify the level of the highest contour, ranging from 0.01 to 1, of any of the attention
focus/clusters containing that coordinate. If we assume a hypothetical situation where the gaze
data of the TD group are falling along two clusters identically (i.e., we obtain the density peaks of
the same level/height), in this case, any two gaze coordinates that fall in the highest level of any of
the peaks would obtain a PI value of 1.
Multivariate association between gaze patterns and behavioral data
The relation between behavioral phenotype and Proximity index was tested using the multivari-
ate approach, Partial Least squares PLS-C (McIntosh and Lobaugh, 2004; Krishnan et al., 2011),
Matlab-implemented source code publicly available on https://github.com/danizoeller/myPLS. This
analysis focuses on the relationship between the two matrices, A (p by b) and B (p by k), formally
expressed as 𝑅 = 𝐵𝑇𝐴. Before computing the cross-correlation matrix R between A and B, both
input elements are z-scored. As the correlation is not directional, the roles of A and B are sym-
metric, and the analyses focus on the shared information between the two. The cross-correlation
matrix R was then decomposed using a singular value decomposition (SVD) according to the for-
mula: 𝑅 = 𝑈Δ𝑉 𝑇 . The two singular vectors U and V are denoted as saliences, where U represents
the behavioral pattern that best characterizes the R and V corresponds to the Proximity index pat-
tern that best characterizes R. Finally, original matrix A and B are projected on their own saliences
yielding two latent variables 𝐿𝑎 = 𝐴𝑉 and 𝐿𝑏 = 𝐵𝑈 . The PLS-C implements permutation testing to
foster model generalization of the latent variables. Once a vector(s) of saliences is defined as gen-
eralized, its stability is tested using bootstrapping approach with replacement. In all the analyses
in this paper, we implemented 1000 permutations and 1000 bootstrapping to test the significance
of the LC and the stability of the vectors of saliences, respectively.
Proximity Index with regards to the visual properties of the animated scene
Pixel Level Salience
Previous research has put forward the enhanced sensitivity to the low-level (pixel-level) saliency
properties in adults with ASD while watching static stimuli (Wang et al., 2015) compared to healthy
controls. We were interested in whether any low-level visual properties would more significantly
contribute to the gaze allocation in one of the groups.

To extract values of basic visual qualities of the scene, we used a salience model that has been
extensively characterized in the literature (Koch and Ullman, 1985; Itti et al., 1998; Itti and Koch,
2000; Itti et al., 2001). We used the graph-based visual saliency (GBVS) version of this model (Harel
et al., 2007), (for source code see https://github.com/Pinoshino/gbvs). This model extracts fea-
tures based on simulated neurons in the visual cortex: color contrast (red/green and blue/yellow),
intensity contrast (light/dark), four orientation directions (0º, 45º, 90º, 135º), flicker (light offset and
onset) and four motion energies (up, down, left, right) (Itti et al., 1998; Itti and Koch, 2001). The fi-
nal saliency map results from the linear combination of these separate "channels" (Itti et al., 2001)
into a unique scalar saliencymap that guides attention (see Figure 5A for the illustration of salience
features obtained using GBVS model on a given frame). To disentangle the relative importance of
the channels besides using the global conspicuity map, we also considered the channels taken sep-
arately (see Appendix 2).
Considering the heavy computational cost of these analyses, all computations were performed at
the University of Geneva on the Baobab and Yggdrasil clusters.
Movie characteristics
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Social complexity
Furthermore, given the findings of the failure of ASD in allocating attention to social content (Chita-
Tegmark, 2016b; Frank et al., 2012), we aimed to test the hypothesis that the Proximity Index values
will be lower for themoments in the videos with enhanced social complexity, involving two or three
characters compared to moments involving only one character (Appendix 3A). Note that, with an
increasing number of characters, we recognize that the scene is inevitably richer in details, an issue
we address by measuring visual and vocalization complexity.

Visual complexity
To measure visual complexity, we calculated the length of edges delimiting image elements (see
Figure 1). Edge extraction was done on every image of the video using the Canny method (Canny,
1986) implemented in Matlab (version 2017a; Mathworks, Natick, MA). This method finds edges by
looking for local maxima of the intensity gradient. The gradient is obtained using the derivative
of a Gaussian filter and uses two thresholds to detect strong and weak edges. Weak edges are
retained only if connected to strong edges, which makes this method relatively immune to noise
(see Appendix 3B).
Vocal video aspects: Monologue and Directed speech
Speech properties of the scenes were also analyzed, using the BORIS software (https://www.boris.
unito.it/). Wemanually identified themoments where characters were vocalizing or speaking. Then
we annotated the moments as a function of the social directness of the speech. In particular, we
distinguished between monologue (characters thinking out loud or singing) and moments of so-
cially directed speech (invitation to play and responses to invitations).
Coarse movie characteristics: Frame switching and moving background
Finally, to test how the global characteristics of video media influence gaze deployment, we fo-
cused on two movie features. The first feature, denoted as the "Frame switch," encompasses all
instances in which the cartoon employs an abrupt frame transition using the hard-cut montage
technique. To represent this feature numerically, a feature vector was created. In this vector, the
first frame following the switch is assigned a code of 1, while all other frames are coded as 0. This
coding scheme effectively highlights the occurrence of these abrupt shot changes within themovie.
Throughout the duration of the movie, this event type occurs 25 times (as indicated in Figure 6).

The feature labeled as the "Moving background" pertains tomoments when the cartoon’s back-
ground moves in tandem with the characters, following their directional motion. We aimed to
distinguish these segments from scenes featuring a static background, as the overall motion dy-
namics in these frames varied. The occurrence of a moving background is observable in 5 distinct
sequences within the movie (as illustrated in Figure 6). Frames with a moving background were
coded 1 yielding a binary feature vector.
Maturational changes in visual exploration of complex social scene
Sliding window approach
Besides understanding the behavioral correlates of atypical visual exploration in ASD,wewanted to
characterize further the developmental pathway of visual exploration of the complex social scenes
in both groups of children. We opted for a sliding window approach adapted from Sandini et al.
(2018) to delineate fine-grained changes in visual exploration on a group level. Available recordings
from our unstructured longitudinal sample were first ordered according to the age in both groups
separately. Then, for each group, a window encompassing 20 recordings was progressivelymoved,
starting from the first 20 recordings in the youngest subjects until reaching the end of the recording
span for both groups. The choice of window width was constrained by the sample size of our TD
group. The longitudinal visits in our cohort are spaced a year from each other, and the choice of a
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bigger windowwould result in significant data loss in our group of TD children as thewindowswere
skipped if they contained more than one recording from the same subject. The chosen window
width yielded 59 sliding windows in both groups that were age-matched and spanned the period
from 1.88 - 4.28 years old on average.

Upon the creation of sliding windows and to characterize each group’s visual behavior and its
change with age, gaze data from the TD group were pooled together to define the TD distribu-
tion in each of the 59 age windows. To characterize the group visual behavior in the ASD group,
we performed the same by pooling the gaze data together from the ASD group in each of the 59
age windows (see Figure 8 A&B). We calculated the mean pairwise distance between all gaze co-
ordinates on every frame for the measure of gaze dispersion in each of the two groups. Then
we compared the relative gaze dispersion between groups on the estimated gaze density of each
group in each age window separately.

To quantify the heteroscedasticity between groups across different ages, we computed the dif-
ference in dispersion (mean pairwise distance to members of own group), denoted as (disp_t(ATD)
- disp_t(ASD)), for each timewindow (t). Then, the permutationmethodwas used in order to get the
distribution under the null hypothesis in each window (t) (H0: disp_t(TD) - disp_t(ASD)=0). Thus, for
each window (59) 100 permutations (i) were performed (i.e. individuals weremixed up randomly in
each group) and then we computed our statistic (disp_ti(TD) - disp_ti(ASD)) for each permuted sam-
ple (i) and each time window (t). The hundred statistics per window thus formed a null distribution
(the expected behavior of our statistic under the null hypothesis) against which we could compare
the"real" statistic estimated in the original sample. The p-value is the probability of getting a statis-
tic at least as extreme as the one we observed in our sample if we consider H0 to be the truth. The
windows where the dispersion values showed statistically significant differences between the two
groups are graphically presented with color-filled circles (Figure 8C).
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Appendix 1

Stability of the normative gaze distribution using simulated samples
of varying size
The sample of 51 TD children whose gaze data was used to obtain a referent gaze distri-
bution was a convenience sample. In the present study, we only included males due to the
fewer number of females with ASD. Having this unique sample of TD children, we tested the
stability of the referent distribution depending on the sample size by performing bootstrap
analyses. Thus, from the available sample of 51 TD children, we performed 500 bootstraps,
startingwith a sample size of 10 until reaching the sample size of 50. Tomeasure the change
in gaze distribution on one frame, we calculated the average pairwise distance between all
gaze coordinates available on the frame. Then for each frame, we calculated the variance
of the average pairwise distance over 500 resamples. Finally, the variance obtained was
averaged over the 5150 frames to yield a unique value of the variance in gaze patterns per
sample size (10-50). Thenwe calculated the "cutoff," as defined by a sample size increase no
longer yielding significant variation in the average variance. This was done using the kneed
package implemented in Python that estimates the point of maximal curvature ("elbow in
curves with positive concavity) in discrete data sets based on the mathematical definition
of curvature for continuous functions (Satopaa et al., 2011)(see Figure 1). The elbow of the
fitted curve on our bootstrapping data was found at 18, meaning that the distribution was
estimated to be stable from a sample size of 18.
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Appendix 1—figure 1. Stability of the normative distribution regarding the normative sample size.The continuous function was estimated using a kneed Python package using the average variance(over 5150 frames) of average (over 500 bootstrapped samples without replacement) mean pairwisedistance of gaze coordinates on the frame (y-axis) for samples sizes ranging from 10 to 50 (x-axis) asthe input: elbow point=18.
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Appendix 2

Basic visual properties of a scene: prediction of the gaze allocation
across individual salience channels

Md TD=0.836, ASD=0.818TD=0.766, ASD=0.752 TD=0.711, ASD=0.698TD=0.725, ASD=0.709TD=0.765, ASD=0.763TD=0.822, ASD=0.809

Z, r 30.40, 0.2920.82, 0.21 10.83, 0.1111.38, 0.118.85, 0.0921.66, 0.21

S
a
li
e
n

c
y
 m

a
p

 
  
  
8
5
%

il
e

S
a
li
e
n

c
y
 m

a
p

 o
v
e
rl

a
y

 o
n

to
 o

ri
g

in
a
l 
im

a
g

e
S

a
li
e
n

c
y
 m

a
p

 

All 5 channels-IODFM Intensity channel-I Motion channel-MFlicker channel-F Color channel-DOrientation channel-O

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

Frames Frames Frames Frames Frames Frames

R
O

C

R
O

C

R
O

C

R
O

C

R
O

C

R
O

C

A. 

C.

B. 

Md TD=0.836, ASD=0.818TD=0.766, ASD=0.752 TD=0.711, ASD=0.698TD=0.725, ASD=0.709TD=0.765, ASD=0.763TD=0.822, ASD=0.809

Z, r 30.40, 0.2920.82, 0.21 10.83, 0.1111.38, 0.118.85, 0.0921.66, 0.21

S
a
li
e
n

c
y
 m

a
p

 
  
  
8
5
%

il
e

S
a
li
e
n

c
y
 m

a
p

 o
v
e
rl

a
y

 o
n

to
 o

ri
g

in
a
l 
im

a
g

e
S

a
li
e
n

c
y
 m

a
p

 

All 5 channels-IODFM Intensity channel-I Motion channel-MFlicker channel-F Color channel-DOrientation channel-O

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

0 2000 4000

0.4

0.6

0.8

1.0

Frames Frames Frames Frames Frames Frames

R
O

C

R
O

C

R
O

C

R
O

C

R
O

C

R
O

C

A. 

C.

B. 

A

B

TD ASD
0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
ea

n 
In

te
ns

ity
 R

O
C

 

r = 0.099
✱✱✱

TD ASD
0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
ea

n 
O

rie
nt

at
io

n 
RO

C
 

r = 0.149
✱✱✱

TD ASD
0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
ea

n 
C

ol
or

  R
O

C
 

r = 0.083
✱✱✱

TD ASD
0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
ea

n 
Fl

ic
ke

r R
O

C
 

r = 0.182
✱✱✱

TD ASD
0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
ea

n 
M

ot
io

n 
RO

C
  

r = 0.066
✱✱✱

Appendix 2—figure 1. A. From left to right: full saliency model with all five channels combined andchannels taken separately: I-intensity, O-orientation, D-color, F-flicker, and M-motion channel. Fromtop to bottom: Saliency map extracted for a given frame, Saliency map overlay on the original image,Original image with 15 % most salient parts shown. B.
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Appendix 3

Social and visual scene complexity
A

B

a b c

a b c

Appendix 3—figure 1. A. Illustration of the measures of social intensity and visual complexity. A.Three frames (denoted as a, b, c) illustrate three levels of social intensity; B. Visual complexitydepicted using the edges of the images detected using the Canny method (Canny, 1986) for theframes a, b and c.
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Appendix 4

Relation between the PI and behavioral phenotype in a paired longitu-
dinal subsample at the first time point (T1)
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Appendix 4—figure 1. Proximity Index and its relation to behavioral phenotype in children with ASDwho were seen two times a year apart (the current figure depicts the initial (T1) visit). Loading on thelatent component was obtained using the partial least squares correlation analysis. Thecross-correlation matrix was composed of the Proximity index-PI on the imaging (A) side and 3thethree variables on the behavior (B) side. The behavior matrix included two domains of autisticsymptoms assessed by ADOS-2, Verbal and preverbal cognition (VPC) of PEP-3, and Adaptive BehaviorComposite Score of VABS-II.
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Appendix 5

Exploring Confounding Factors in the Sliding Window Analysis of Mat-
uration in Visual Exploration within Complex Social Scenes
Size. In response to the disparity in sample size between our two groups (51 TD and 166
ASD children), we implemented a methodology to mitigate the influence of this factor. We
generated 100 bootstrapped ASD samples (without replacement), each with a size identical
to that of the TD (51 subjects). These ASD samples were matched to the TD sample in terms
of chronological age. Subsequently, for each of the bootstrapped samples, we aggregated
all longitudinal data and computed the dispersion measure over time, akin to the process
described in Figure 8, panel C. As illustrated in Panel A below, the results reveal that the
bootstrapped ASD samples, characterized by both size and chronological age alignment
with the TD group, exhibit higher levels of dispersion across the span of childhood years.
This is in contrast to TD children, who exhibit a discernible pattern of progressive refinement
in their visual exploration behavior.

It’s worth noting that, while permutation testing could have been an ideal method for as-
sessing the statistical significance of the findings in this section, we opted not to implement
it due to the substantial computational cost associated with our analyses. The computa-
tional demands of our study necessitated an alternative approach to address the sample
size and age-matching issue effectively. Consequently, we relied on the bootstrapping tech-
nique to provide valuable insights into the dispersion differences between the TD and ASD
groups, while acknowledging the limitations imposed by the computational constraints.

Phenotypic heterogeneity. To address the considerable developmental heterogeneity
inherent in the ASD group, we decided to repeat the analyses in the subsamples of a more
restricted range of developmental functioning. Thus we derived 100 simulated samples of
the same size as the TD group (51) firstly within the normal developmental range (DQ above
80) and then, we performed the same for the lower-functioning individuals with ASD (DQ
below 80). As shown in Panels B-C below, both groups show sustained dispersion over the
childhood years, in contrast to the convergence seen in the TD group. This trend is particu-
larly pronounced in the subset of individuals with lower developmental functioning (Panel
C), wherein a discernible divergence becomes increasingly evident during the preschool
years.

Developmental age. As a final step, to comprehensively address the question of the dif-
ference in developmental age between our TD and ASD sample, we implemented a sliding
window approach using our cross-sectional sample (51 TD and 166 ASD children). However,
in this approach, we utilized developmental age for creating age-matched windows instead
of chronological age as previously used. We initiated the process with the first 20 record-
ings from subjects with the lowest developmental age and progressively shifted a window
encompassing 20 recordings. This continued until the entire range of recordings for both
groups was covered. Similar to the method applied in the main part of the manuscript, we
excluded windows containing duplicate recordings from the same subject. This method
yielded a total of 60 windows, each matched based on age, with developmental age in the
ASD group and chronological age in the TD group Panel D1. To test the stability of our find-
ings and assess the potential influence of sample size, we replicated the sliding window
procedure using 100 bootstrapped ASD samples, each comprising 51 subjects whose devel-
opmental age was matched to the chronological age of the TD subjects. For the purpose
of interpretation, we plotted a linear regression line (in red) for each bootstrapped sample
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Panel D2. Our results reinforce our initial findings when using chronological age-matched
samples Figure 8. Children with ASD consistently exhibit a greater degree of interindividual
disparity across childhood years, in contrast to TD children. This outcome underscores our
findings’ robustness and strengthens our observations’ validity.

Appendix 5—figure 1. Evolution of visual exploration patterns in young children with ASD and the TDgroup using a sliding window and bootstrapping approach. The dispersion in 100 bootstrappedsamples of ASD recordings is given in red and the original group dispersion in the TD group is shownin blue. Panel A: ASD bootstrapped samples are matched to the TD group with regards to size (n=51)and chronological age; Panel B: ASD bootstrapped samples are matched to the TD group with regardsto size (n=51), chronological age and have the DQ within the normal range (above 80); Panel C: ASDbootstrapped samples are matched to the TD group with regards to size (n=51), and chronologicalage and have the DQ below the normal range (below 80).Panel D1: Evolution of visual explorationpatterns in young children with ASD whose developmental age was matched to the chronological ageof the TD group using a sliding window approach. Comparison of the gaze dispersion between twogroups using Mean pairwise distance of gaze coordinates on each frame. The dispersion wascalculated across 60 sliding windows spanning 2.9-4.3 years of mental age on average ( every circlerepresents a window encompassing 20 recordings).; Panel D2: The sliding window approach wasapplied to the ASD bootstrapped samples that are matched to the TD group with regards to size(n=51) while mental age was aligned with the chronological age of the TD group.
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